241130 기트남어 해설
게시글 주소: https://ebsi.orbi.kr/00071662315
기하 특
해설 아무도 안올려줌
(가) 조건에서 P,Q,R은 각각 D,E,F를 중심으로 하고 반지름이 1인 원을 그린다.
(나) 조건의 우변에서 원의 중심과 삼각형의 세 점을 기준으로 동점과 고정 벡터를 분리시킨다.
AX벡터 = (DB벡터-DP벡터) + (EC벡터-EQ벡터) + (FA벡터 - FR벡터)
이때 고정된 벡터들을 평행이동 시켜 더하면 영벡터가 되는 것을 알 수 있다.
AX벡터 = - (DP벡터+EQ벡터+FR벡터)
|AX벡터|가 최대이면 |-DP벡터+EQ벡터+FR벡터| 또한 최대이므로
우변의 벡터들이 모두 같은 방향으로 평행하게 움직일 때 최대임을 알 수 있다.
일반성을 잃지 않으므로 적당한 위치에 벡터들이 평행하게 움직이도록 점 P,Q,R을 잡아주자.
삼각형 PQR은 삼각형 DEF가 같은 방향으로 평행이동 되었음을 알 수 있다.
삼각형PQR의 넓이 = 삼각형DEF의 넓이
삼각형 DEQ 세 변은 모두 길이가 3과 1, 사잇각이 60도인 삼각형의 나머지 변으로 이루어진 정삼각형이다.
코사인 법칙을 통해 삼각형 변의 길이 루트7을 구하면 정삼각형 넓이 공식을 사용하여 문제에서 묻는 값이 21임을 알 수 있다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적엑셀1회 1
나만 어려운가? ㅡ 수열 극한 공부를 덜해서그런가
-
키보드로 탁탁탁 하면서 막 함수걸고 계산하고 쫘라라라라락 시트별로 나누고 하는거...
-
친구가 안 푼다고 해서 줘가지고 4회차부터 풀어보는데 4회차부터 막막하네 ㅋㅋㅋㅋㅋ...
캬
기하잘해 체고야
으헤헤
자기전에 풀어보고 칼럼도 읽어봄
무슨 말인지 모르겠지만 칼럼은 좋아요
감사합니다
감사합니다
29번도 해줄 수 있음?
좋아 다음엔 그거 올려볼게