이건어떰
게시글 주소: https://ebsi.orbi.kr/00071315503
모순<->(A and not A)<->거짓
모순<->거짓
무모순<->참
---------------------------------
공리는 참이라는 증명이 없다
따라서 귀류법 증명도 없다
따라서 공리를 부정하면 "무모순"이다
---------------------------------
위 둘 을 연결하면,
"공리를 부정하면 참이다"
_______________________
전제가 참이면 결론이 참이다
대우명제
결론이 거짓이면 전제가 거짓
공리는 전제에 속한다
공리를 부정하면 무모순 은
공리가 거짓이면 무모순 이다
즉
결론이 거짓이면 전제가 거짓이고 전제가 거짓이면
공리가 거짓이고 공리가 거짓이면 무모순이다
줄여서
결론을 부정하면 참이다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
윤석열은 9수까지해서 사시패스를 했는데 조국은 사시패스도 안하고 설법 교수된거 ㅇㅇ
-
말안된다……
-
작년에 학원끝나고 걸어가고 있는데 길에서 사람보고 하수구에 뛰어드는 쥐봐서 충격먹었음
-
잠은 안 오네요
-
점공 업뎃완료 2
오늘 두명이나 들어왔네용 제발 최초합기원!!!
-
군필 03년생이고 이번에 휴학하고 공부하는데 수학개념을 많이 까먹어서 시발점부터...
-
롤케이크 맛있어 2
-
내일도 안좋으면 병원가야지..., 다들 굿밤되세요ㅜ
-
ㅅㅂ 팔만전자 되는 순간 다 팔아버린다
-
제2외국어 보는반이 분위기 좋다는 말도 있던데요
-
기차지나간당 6
부지런행
-
진심 트라우마 ㅜㅜ
-
히잉
-
개념강의가 가장 좋았고 판서좋아인간이라 더 잘 맞았나봐요 풀커리 탔고 수능날 아침에...
-
시ㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣ발 ㅠㅠㅠㅠㅠㅠ
-
되찾아 오자꾸나 가보자 가보자~
-
근데 성적도 재밌어질거같아서 못하겠음
-
초딩인가 중딩때 인형뽑기 오락실 잠깐 유행하고 그뒤로 싹 사라졌는데 디시 우후죽순생김
-
군대 가면 생각보다 내 학벌이 나쁜 게 아니어서 놀랐네요. 1
지방 국립대 문과 출신이라 속된 말로 하위 10%일 줄 알았는데 군대에서는 이것도...
-
슬슬 합격발표일을 위한 마음의 준비나 해둬야겠군요 설날이 코앞인데 부디 어깨 펴고...
-
어우 기하가 재밌는데
-
고등수학 개념서 2
기본정석이랑 숨마쿰라우데 중에 어떤게 더 낫나요? 완전 노베고 처음 시작하는 거예요
-
잇올 대체공휴일 4
잇올 대체공휴일이나 임시공휴일에 자율등원인가요?
-
이대남들 다 그런거 아나요? 배운다면 어케 배우죠..?
-
이번에 듣보잡 샀는데 step3 뉴테이션 부분은 건너뛰고 1,2만 해도 상관없죠?...
-
국어 대학전공서적공부법으로1등급쟁취 영어 영강공부법으로1등급쟁취 수탐만 판다 ㅇㅇ
-
만화책도 책임? 2
그럼 나도 어릴때 책 많이 읽었지 그리스 로마 신화 칭기즈칸 삼국지 역사 와이책...
-
아니 그럼 n이 이미 붙은거 더 커져도 상관없으니까 대학만 올리면 되는거잖아? 오?
-
엘베 같이 탐 ㅎㅎㅎㅎㅎㅎ
-
부모님 피셜 졸업생중에 ceo도 많고 하다보니깐 동문회만 해도 기부받아서 돈이 엄청 많대요
-
연대 조발하라 7
조발하라 조발하라
-
다시 전과 알아보고 하니까 마음이 편해지네 동아리도 하고 축제도 가고 친구도 많이 사귈거임
-
이거 개천절부터 해도됨? ㅜㅠㅠㅠㅠ
-
20으로 알고 있는데
-
수1수2 수분감(수1끝) 미적 검더텅(적분하는중) 작년 설맞이 수1수2 미적 드릴1...
-
걍 좀 걸어서 국밥집 갈까요
-
다들 개인적인 질문(동기 등등....) 받으셨나요? 저는 못받았어가지고...
-
확통 찍먹해봤는데 ㄷㄷ이네
-
화1 3
이거 물1보다는 안고인거같은데 걍쉽게나와서아님? 원과목 최고권위자는 물1으루ㄱㄱ
-
응
-
대학 생활 아는 게 아무 것도 없어서 일단 가야하는데 어따 문의함뇨....
-
저 어릴땐 스마트폰 안썼어서 그냥 책만 계속 읽었음 한 9살정도쯤에 책 많이 읽으면...
-
혹시 몇시에 문열고 언제까지 공부할수있나요? 네이버 플레이스에는 10시까지라구...
-
이책은 적중률이 좋을수밖에 없네요 그냥 사전수준...
-
맞팔9해요 7
저도 갈테가 달고싶어요...오네가이시마스
-
돈관리하는 방법 이런거요..
-
나 근데 독서 4
수행평가때문빼곤 3년간 1권도 안읽은듯 ㅅㅂ그래서 내가 2인가
대체 이 주장을 끊임없이 반복하는 목적이 무엇인가요.. 정말 순수하게 궁금해서 여쭙습니다
진정한 자유의 논리적 기반확보
공리를 부정하면 그 공리 안에서는 무모순이 아니라고요오오
공리를 부정하면 공리가 거짓이 되는데요
공리가 거짓이 되는게 아니라
공리를 부정하는 명제가 거짓이 되는거예요
A를 부정하면 A가 참이 아니라는말 아닌가요
이렇게 생각하셈
공리계 안에서 공리는 무조건 참임.
공리에 태클걸면 태클건 명제가 거짓임.