미적분 증명 오류 봐주세요
게시글 주소: https://ebsi.orbi.kr/00071061621
재업 ㅈㅅ합니다 사진 첨부가 안 돼서요ㅠ
지수함수 도함수 증명하다가 e^f(x)의 도함수를 라이프니츠 미분 말고 다른 방법으로 구하고 싶어서 도함수의 정의 써봤는데 다르게 나오네요
어디가 오류인지 찾아주실 스승님 계신가요
그리고 문제집 증명 보면 라이프니츠 미분으로 증명하던데 그래야 하는 이유는 무엇인지요?
***해결됐습니다 감사합니다!!***
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한동안 바빴네요
-
얼마걸어둘까요?
-
재수 수학 고민 0
수능때 수학 미적으로 높3 떴는데 다시 해보고 싶습니다 개념이 아예 없는 것은...
-
보통 스케줄 조정 과외생이랑 하지 않나요? 과외학생 어머니랑 하는 경우도 있나요?...
-
는 아니고요.. 그냥 문돌이 봇치임 사실 문과도 아닌거 같음 지금 이 글 왜...
-
21학번 코시국 + 군대 + 쌩삼수 이 테크 타고 사회생활 사실상 올 스톱에...
-
진짜 개음침한새끼 많음 16
피씨방 왔는데 무슨 유튜브로 야한 만화?(그 찐따같은 그림체 있자늠 누가 지...
-
카레를 해보아요 1
재료 - 감자, 당근, 양파 - 방울토마토(있으면) - 좋아하는 고기 -...
-
생각해보니 2
진학사 희망 대학 순위 반대로함 내 뒷점수 친구들 괜찮겠지
-
핵 없는판이 없다던데ㄷㄷ
-
저 칼럼때메 내가 산화되는걸로 마무리된다면 놀라울듯.
-
아 30초만 투자하시라고
-
이제 씻고 독서실 갑니다아…
-
너도 사랑했던 님 찾아 우는구나~
-
경매인데 얼마정도 되려나..
-
순공시간 31분 확보
-
팔로워 한 명 실종됨 20
똥을 너무 많이 쌌나 싶기도 하고
-
가군발뻗잠하고싶어요
-
근데 탁월하게 잘하는 과목도 없고 내 공부법이 뭔지도 모르겠고 글도 못 써서 그냥 포기함
-
시발점 본교재 step 1 먼저 대 워크북 step 1 1
뭐가 먼저죵
-
지금 마음 가짐 그대로 가져가는 게 제일 힘들거에요... 그렇지만 이 글을 보고...
-
왜 평지모드로 타면서 경사모드 가능한걸 차지하고있냐ㅜ
-
27수능은 진짜 어떨지 상상이안됨 웬만하면 올해 끝내는게맞다..
-
서성한 점공 0
지원한 과들이 다 점공률 30~40 사이인데 서성한 라인은 이정도면 상위권이 많이...
-
진짜로 너무부러움
-
국어고자 8
1등급도 아니고 2등급 중반정도는 노력하면 가능하겠지?
-
선넘질 칼ㄹ럼(26) 11
야메추 해주샘뇨
-
으으
-
기균같은 전형으로 매년 몇명씩 들어가는데 메디컬 애들 말 들어보면 수능 공부보다...
-
근데 본인 능지로는 불가능임..
-
ㅋㅋㅋㅋ 모 잡대 레전드
-
질문 받아볼게욥..!! 12
고곡
-
그 전 신캐도 안해봄 내 신캐는 에코야 그게한1년6개월동안마지막신캐였나...
-
오르비 검색해버림 나 ㄹㅇ 옯창인가...
-
적벽은 알고! 정벽은 알아!
-
의대 선택과목 6
의대 가려고 다시 수능 보려고 하는데 선택과목이 고민입니다 22수능 기준 화1생1...
-
물리러들을 위한 씻는법 가이드
-
국어 수학 영어로다 메가로 듣고 탐구만 임정환 들으려고 삿는데 사탐도 메가로...
-
이제 공부해야되네................
-
조발 없으면.
-
ㅠㅠㅠㅠㅠㅜㅜㅜㅜㅜㅜㅠㅠㅠㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅡㅠㅜㅠ 올해가 최적의 기회였는데...
-
그거 진지하게 안하고 그냥 넣고 싶었던 과 넣어본 사람있으면 좋아요 눌러줘
-
빨리 와라
-
집독학해서 재수 너무 힘들었어? 과탐 못버려서 수능 망했어? 원서영역을 컨설팅...
-
니들이 중대 와서 날 백날천날 찾아봤자 절대 날 특정할 수 없음
-
뭐야 고대의대엿자너..
g'(u)=lim 부분에서 h가 저런 식으로 쓰이면 안 됨
왜 안 되나요??
e^f(x+h)-e^f(x)로 적용이 되어야지
e^{f(x)+h}-e^f(x)가 되면 이상해짐
아 이해했어요 감사합니다
말 그대로 u에 대해 미분한 것인데요. 합성함수 미분을 증명하고 싶으시다면 x에 대해 미분한 것으로 증명해야 할 것입니다. 저렇게 식을 쓰면 u 자체를 변수로 보아 u로 미분한 것이 되는거죠.
아하 그렇군요 고수님 감사합니다 ㅠㅠ
여기에 첨언하자면,
뉴턴식에서는 미지수를 임의로 지정했을때(혹은 2개 이상이 나올때) '(프라임)이 뭐에 대한 미분인지 확실하게 보여주지 않는 문제를 확인할 수 있습니다.
그러기에 뭐에 대해서 미분한다는 의미기호가 확실히 들어간 라이프니츠를 이용하죠
윗 식은 f(x)에 대해 미분한 식이고, 선생님께서 내리시고 싶은 결론을 도출한 식은 x에 대해 미분한 것이므로 다른 것입니다.
제가 잘못 이해한걸수도 있는데 h'(x)=g'(f(x))가 어떻게 되는건가요
그냥 제가 임의로 g합성f = h라고 잡았습니다..
그러면 h'(x)를 미분하면 g'(f(x))f'(x)가 되어야지 g'(f(x))가 되는 이유가 뭔가요
오
h'(x)가 아니라 h(x)
h 미분하고 원함수에 f'(x)를 곱하면 맞게 나오네요
h로만 생각해서 형태만 본 것 같아요
감사합니다!!!
네 해결되셨다니 다행입니다
확실히 알았어요
다들 감사드립니다