수학 관련 질문 받습니다 (현직 수학 학원 강사)
게시글 주소: https://ebsi.orbi.kr/00069539532
문제 물어보셔도 되고 방향성이나 뭘 해야할 지 모르겠는 분들 질문 주시면 답변 드립니다
간만에 쉬는날인데 심심해서 질문 받습니다.
간단한 질문은 답글로 드리고 조금 긴 내용이면 쪽지로 드릴게요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반수의 결과로 가치 있을까요? 중대가 더 높아졌긴해도 사회나가면 중경외시...
-
잘자요 0
다들메리크리스마스
-
병약미소녀 ㅇㅈ 3
은 구라고 그냥 ㅂㅅ임
-
모두 잘자요 7
다들 행복한 이브 보내셨나요? 전 아싸라 늘 지내듯 지낸 것 같네요.. 모두 잘자고...
-
한국정발하면저걸로바꿔야지
-
현역인데 여기 못가면 재수할 예정인데 합격확률 0퍼센트인가요? 4
ㅜㅜ..그리구 이해가 안가는게 최초정시 모집인원이 238명인데 저기 등수 안에잇는데 3칸 ㅜㅜ
-
산타랠리 에 숏을 쳐?
-
하루종일 오르비를 지킨 자의 훈장
-
현역 수능 언91 미82 영2 생77 지91 재수 수능 언96 확96 영1 정법71...
-
다들 가니까 18
펑
-
여친만나러감 3
ㅂㅂ
-
에 전혀 관심 없는 건 아닌데 n이 늘어나니까, 연애 감정이 무뎌져요.. 연애...
-
괜히 기념일 만들어서 혼자있는 사람 더 비참하게 만들어ㅠ
-
기만글만 안쓰면 욕 안먹을 텐데
-
ㅂㅂ
-
안돼 가지마!!!
-
크리스마스에 여친없는 애들끼리 놀고있으니까 ㅈ같음이 2배 흐흐
-
저능부엉이
-
이제 자야돼 2
내일 또 보자 옯붕이들
-
zzz 2
-
. 3
https://orbi.kr/00070789340
-
(고려대)의대 면접 보는데 얼마 정도 시간이 소요 되나요?? 고려대 아니어도 한번씩만 답변좀...
-
ㅂㅂ
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
이제야깨달아버렸다
-
글 안 올라오네 2
임마들 다 어디감?
-
감성이 다르노 결말이 너무 성급했단 느낌은 아무래도 이 애니가 10회라는 분량밖에...
-
논술 예비 받음 ㅋㅋ
-
정시의벽 <<< 6
이 사람도 글 쓰는 거 까먹어서 아까 호다닥 글 쓰고 또 한참 잠적했다가 나타남...
-
일본영화 추천좀 2
잔잔한거 좋아함 넷플에있는거로 ..
-
이렇게 푸는거 맞나요 재밌네요 ㅋㅋㅋ
-
표본이 제일 많은 진학사가 컷이 높아서 컷이 낮은 고속 텔그를 믿지 못함 ㅜㅜ
-
ㅋㅋ 동지들
-
동일과목원투라서 잔학사 열람이 안되넹
-
여르비 ㅇㅈ해도 누가했는지 다까먹음 망할거 닉보고는 여르비인지 못맞출듯
-
ㄹㅇ
-
막상 좋아하는 사람 보면 이상형과는 좀 거리가 있는 듯요
-
쌍사 이 씨발럼
-
자야지 6
잠뇨
-
???: 이거 정적분 정의 아님?? 이건 미적분의 기본정리라고!!!!!!!!!!
-
컴이나 정보대학
-
저 하나 질문좀요.. 지방사는 사람들이 서울권대학으로 가려는 이유가 뭘가요? 8
단순히 대학 네임드때문일가요? 제가 공대가 목표이고 전북에서 사는데요..어차피...
-
이상형 말해주새요 저는 저보다 키크고 귀여운 사람!
-
다 필요없고 4
정xxx를 들어올려서.. 하고 싶으면 게츄
-
아주대 문과에서 공대로 전과하려면 필수로 들어야 하는 수업들 때문에...
-
안자는 사람 손 17
-
들려주지 않아서 불안하네요...
통합형 수능에 대해서 어떻게 생각하시나요
개인적으로는 조금 아쉽죠. 솔직히 엄청 어려운 내용도 아니라고 생각하는데 굳이 빼는게 맞나 싶긴 합니다. 차라리 과목 자체를 선택하게 해서 공부 부담을 줄여주는것도 괜찮다고 생각하는데 수학 안에서 덜어내는 것 보다 과목 자체를 덜 수 있게 해주면 더 괜찮지 않을까 싶네요...ㅠ
틀린문제 여러번 다시 풀어보는거 어떨까요?지금까지 틀린문제를 다시 안봤는데 이게 실패요인인것같아요 2등급입니더
현재 2등급이시고 1등급이 목표라 생각하고 답변 드립니다. 틀린 문제를 여러 번 푸는건 사람마다 다를 수는 있지만 저는 그다지 추천드리는 방식은 아닙니다. 틀린 문제에서 어떤 부분이 약해서 틀렸고 그 부분을 보충하는 것이 다음에 비슷한 문제가 나왔을 때 틀리지 않을 수 있는 가장 확실한 방법이기 때문에 틀린 문제를 다시 보면서 문제를 다시 풀기 보다는 틀린 부분을 다시 확인하시는게 더 좋을겁니다.
가4 나1 팩트인가요
조금 민감한 질문일 수 있다고 생각하는데...ㅎㅎ
개인적으로는 옛날 미적분2 시절에는 맞다고 생각합니다. 실제로 친구들 중에서 그런 애들이 많았거든요. 하지만 요즘은 그 정도는 아니라고 봅니다ㅎㅎ
10모 68맞은 현역입니다. 2등급을 맞기가 너무 어렵습니다. 뭐해야할까요ㅜㅜㅜ
2등급이 목표시라면 일단은 준킬러 부분들을 조금 확실하게 잡는것을 목표로 하는게 좋습니다. 수능의 출제 경향을 살펴보면 킬러(?) 문제들이 그다지 어렵지 않고, 준킬러가 다소 복잡하게 생겼지만 풀어보면 은근 쉬운 문제들이 많습니다. 즉, 준킬러를 당황하지 않고, 돌아가지 않는 풀이로 풀었을 때 안정적인 2등급을 받을 수 있습니다. 6월, 9월 모의고사를 참고하여 준킬러로 출제된 유형을 먼저 보시고, 그 부분을 정확하게 다룰 수 있도록 만들어보시면 괜찮을겁니다~
감사합니다!!
f(x)를 y=x에 대하여 대칭시키고
(2,1) 만큼 평행이동한 함수가 g(x)라고 합시다.
(a,f(a)) 가 f(x) 위의 점이면
저 점을 위 관계에 따라 이동한 것은 g(x)위의 점입니다.
해서 두 점의 y좌표로 같다고 두어 식을 하나 찾을 수 있는 것 이외에, 기하적인 의미가 있다고 치면 어떤게 있나요?
마지막 줄에 두 점의 y좌표로 같다고 두어 식을 하나 찾을 수 있다 는게 혹시 무슨 말이에요...?
B(b,g(b)가 g(x)위의 점이면
f(b)=a+1
g(b)=a+1 말씀하시는거죠...?
아 넵 !
어...일단 식 자체는 f(a)=a+1이 나온다는 점에서 모든 점에 대하여 저 상황이 성립한다면 f(x)=x+1이라는 일차함수가 나온다는 내용말고는 딱히 기하적인 의미는 없구요. 마찬가지로 특정 점에서 저 식이 성립한다고 해도 우연의 일치 정도의 느낌이라 기하적으로 특정한 의미가 있다고 보이지는 않습니다. (제 시야가 좁아서 그럴 수도 있습니다...ㅠ)
10모 확통 61점 나왔는데 3등급 목표면 지금 시점에서 뭘 해야 할까요??
쪽지로 답변 드리겠습니다.
3등급에서 벽 못깨는 학생은 뭐가문젤까요?
실모 개털리고서 기출벅벅하다가 혹시나해서 또 실모치고 깨지고 어제는 쎈풀었네요..
쪽지로 드려도 될까요? 사람들마다 달라서 이유를 아마 좀 찾아봐야 할꺼에요
10모 확통 96입니다. 마무리로 뭘 하면 좋을까요?
음... 목표에 따라 다르겠지만 솔직하게 저라면 그냥 적당히 복습하면서 다른 과목 할 것 같긴 합니다. 실전적인 감각을 잊지 않기 위해서 1주일에 1~2개정도 실모 풀고, 혹시나 조금 약한 파트가 발견되면 추가적으로 공부하고. 뭐 이정도면 충분할 것 같습니다. 컨디션 관리만 잘하시면 좋은 결과 나올 것 같아요
실수 전체 집합에서 미분 가능한 함수 f(x)와 양수 t에 대하여 인테그랄 0부터 t까지 ~~ = f(t) 이다.
이런 식으로 문제가 주어질 때마다 t에 0의 우극한을 넣어서 0=f(0) 으로 푸는데 이거 잘못 풀고 있는거죠..?
정확하게 따지자면 0=f(0)보다는 0=f(0+)가 맞는 표현이긴 합니다.
답변 감사합니다
혹시 마약N제 저자분이신가요?
아...아닙니다...ㅎㅎ 학생 때 마약N제 너무 재밌게 풀어서 닉네임을 이렇게 지었던 것 같습니다.
위엣분처럼 확통4인데 3 무조건 만들고 싶은데 어떻게 해야할까요..ㅠㅠ
쪽지로 현재 상황 상세하게 보내주시면 답장드리겠습니다