GOAT 판별 ox 문제 해설
게시글 주소: https://ebsi.orbi.kr/00067575435
https://orbi.kr/00067568363/GOAT%20%ED%8C%90%EB%B3%84%20ox%20%EB%AC%B8%EC%A0%9C
(GOAT 판별 ox 문제)
재미삼아 올린 글인데 이렇게 많은 분들이 보실 줄 몰랐습니다!
많은 분들이 해설을 원하셔서 간단하게 적겠습니다!
1. 미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>0?
(X)
반례 : f(x)=x^3은 실수 전체의 집합에서 증가하지만 f'(0)=0입니다.
+
'미분가능한 함수 f(x)가 실수 전체의 집합에서 증가하면 f'(x)>=0이다' 는 참입니다.
1번 문제의 역인 '미분가능한 함수 f(x)가 f'(x)>0이면 실수 전체의 집합에서 증가한다.' 는 참입니다
2. 연속함수 f(x)가 x=a에서 극대이면, x=a에서 극소가 아니다?
(X)
반례 : f(x)=0은 x=0에서 극대이자 극소입니다.
+ 극값의 정의는
https://namu.wiki/w/%EA%B7%B9%EA%B0%92?rev=209#rfn-2
를 참고하면 될 것 같습니다.
3. 연속함수 f(x)가 x=a에서 미분가능하지 않으면, x=a에서의 접선이 존재하지 않는다?
(X)
반례 : f(x)=x^3의 역함수 g(x)에 대하여
g(x)는 x=0에서 미분계수가 존재하지 않아 미분가능하지 않으나, x=0을 접선으로 갖습니다.
+ 잘못된 반례
f(x)=lxl+x는 x=0에서 미분가능하지 않으나 y=0을 접선으로 갖는다?
f(x)=lxl+x의 x=0에서의 접선은 존재하지 않으므로 잘못된 반례입니다.
접선의 정의는
https://blog.naver.com/772tiger/222518633109
를 참고하면 될 것 같습니다.
4. 미분가능한 함수 f(x)에 대하여 f'(a)=0이고 x=a에서 극값을 갖지 않으면 (a, f(a))는 f(x)의 변곡점이다?
(X)
일단 변곡점이란?
함수 f(x)의 그래프가 오목 -> 볼록으로 또는 볼록 -> 오목으로 변하는 지점 입니다.
반례 : f(x)=x^2sin(1/x) (x가 0이 아닌 경우), f(0)=0
정말 유명한 특이한 (병리적) 함수이므로 자세한 설명은 생략하겠습니다.
함수 f(x)의 그래프입니다.
f'(0)=0이지만 x=0 근방에서 그래프가 계속해서 요동치고 있으므로
x=0에서 극대, 극소, 변곡점 모두 될 수 없습니다. (물론 엄밀히는 증명을 해야 하지만..)
+ 잘못된 반례
1. f(x)=x^3(x-2)가 x=0에서 극대, 극소 변곡점을 갖지 않는다?
x=0을 기준으로 볼록 -> 오목하게 변하므로 변곡점이 맞습니다.
2. 상수함수?
상수함수는 모든 점에서 극대 또는 극소이므로 전제에 맞지 않습니다.
3. 도함수가 존재하나 이계도함수가 존재하지 않는 함수
예를 들어
f(x)=x^2 (x>=0), -x^(x<0)인 경우
x=0에서 이계도함수가 존재하지 않아서 극대, 극소 변곡점 모두 아니다?
의외로 많은 분들이 착각하시는 것들 중 하나 입니다.
'변곡점이 존재한다'고 해서 그 점에서 이계도함수가 존재하는 것은 절대 아닙니다.
극대 극소랑 비슷하게 변곡점의 '정의'를 이용해서 살펴보면
x=0을 기준으로 오목 -> 볼록하게 변하므로 변곡점이 맞습니다.
그래서 이게 수능에 도움 됨?
결론부터 말씀드리자면 1번을 제외하고는 필요 없습니다.
사실 2번 같은 경우도 중요하긴 하나....최근 평가원에서 상수함수의 극대 극소를 물어보는 문항을
본 적이 없어서 그렇게 크게 중요한 부분은 아닌가 봅니다.
3번은 접선의 정확한 정의를 고등과정에서 알려주지 않기 때문에 크게 중요하지 않고,
4번은 말할 것도 없다고 봅니다...
그래서 이 ox 문제를 풀지 못했다? 수능 성적에 어떠한 영향도 주지 않으니 걱정하지 않으셔도 됩니다..!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좀 어렵게나오면 다 틀릴 자신잇음..
-
사실 언매런 하고 처음 공부
-
ㄱㅈㅇ
-
저도 김종익 강사 Q&A 보다가 찾은 거 하나 올려보죠.
-
음음 띠요요잉
-
철학과가 가고파 6
…
-
무엇이 더 낫나요?
-
취킨취킨 5
맛있는 취킨
-
내일실모 2
내일도 국어1 수학96 쟁취하자
-
88년생이 왜 있지 독동반상회는 또 뭐임ㅋㅋㅋㅋㅋ
-
"여백없음"
-
성적이 안나오면 다들 방법이 문제라 하지만 그방법이란게 뭔지는 안알려줘 사실 이미...
-
“나를 이끄는 별은 참말이자 진리였다. 그 별을 따르며 맨 처음 나는 내 자신의...
-
천민이 감히 나대면 역할 행동에 대한 제재를 받는구나 왤케 새롭지 오늘
-
용어 같은거 땜에 그런가?? 작년같은 수필이 더 어렵지 않나..
-
고전소설 비연계 나오면 그냥 시험지 찢겠음
-
영어 단어 1
지금 3개년 영어 기출 단어 복습하고, 영어 수완+수특 단어장 뽑아서 모르는 거...
-
주식이나 할까 본인 뭐 좋아하는것도 딱 그 내부에서 논란 터지기 직전에 다른걸로 갈아타는거 잘함
-
지금있는거 빼면 딱 한두개정도 더풀수있을거같은데 이감오프랑 김승모 제외 맛도리였던거...
-
내가 37인가 받았는데 20몇등임....30몇명 쳤는데
-
1~2등급 정도 되는 실력인데 항상 실수해서 점수가 계속 떨어집니다 4월부터 개념형...
-
시즌3 8회 이렇게도 낼수있는걸 깨달음 ㅋㅋ
-
문제 좋나요?
-
슬슬 졸리다 2
오늘 한 걸 3번이나 더 하고 내년애도 해야된대 몸이 부셔지겠어 아주
-
최근 최저점 44 11덮 2점3개 ㅆ.ㅂ 수능전까지 최저점을 47로 만들고싶은
-
있나요?? 실모 1컷 오고 가는 성적, 69평 1인데 수능 날 2등급 혹은 그...
-
국어 실모 풀때 4
똑같은 방법으로 풀고 다 제 기준 확실한 근거로 답 체크했는데 1-3 진동하면 뭐가 문제인가요
-
신경향파? 1
뭐야
-
몸이 큐웅 큐웅거림
-
다시하라면 못할정도로 내 모든걸 갈아넣은 1년을 보낸다면 결과가 어떻든 수긍할 자신...
-
이감 엣지 1
학원용 모의고사 6-9 , 10 이 엣지 모의고사에요??? 학원용 모의고사에는...
-
6평에 나온것 같은거 무지성 근사 때리는거 평가원이 저격하거나 그러지 않나요??
-
저 분 햄지르라고 한능검에서 커뮤픽•사파픽으로 유명했던 강사님이셨거든요? 저는 물론...
-
오늘도 가나 지문에 사회나 과학 나왔을떄 예상한거지 걍 독서 문학에서 뭐 예상한다고 말한적있음?
-
Y축대칭 언매미적사문한지.
-
작수보다 어렵나요???0
-
수능날 머 먹지 12
제육 먹고 싶은데 다 식을 것 같음
-
그래도.. 1
내곁에 한 사람이 있으니까 행복하다.. 이 사람마저 없었으면 진짜 힘들뻔.. 나도...
-
성적 상승 ㅁㅌㅊ 17
https://orbi.kr/00024699094 반년만에 백분위 53 올림
-
국어황들은 1찍고 바로 넘기나요? 사고의 흐름이 궁금함요
-
한국사 1
-
엉엉
-
11덮 지구 44점 나왔는데 난이도 어느 정도인가요?무난무난한거...
-
대성 패스 구매하실 분 메가커피 기프티콘 같이 받아요 1
대성 마이맥 패스 구매하실 분 메가커피 쿠폰 같이 받아요! id :...
-
절반풀어서 5일이면 다풀것같은데 기출을 할까요 이감 시즌6할까요?
-
사문은 말할것드 없이 어려웠고 생윤도 10덮 보단 어려운거같은데
4번은 많이 유명해서