경제학과와 과탐의 연관성(경험에 비추어)
게시글 주소: https://ebsi.orbi.kr/00066174560
최근 이공계열의 학생들의 경제학과 진학이 부쩍 많아진 것 같습니다.
저 또한, 과거 이과 학생이었고, 물리1 화학2 수능 응시 후 대학에 진학한 학생입니다.
많은 학생들이 과학탐구를 공부하였던 것이 아깝기도 하고, 경제학과 기존 이과공부의 차이에 대해 많은 거부감? 혹은 공포감을 가지고 있을 것이라고 생각합니다.
하지만, 제가 경험한 결과 학문이라는 것이 많이 연결되어있고, 저는 물리1 화학2 과목에서 공부했던것과 유사점을 많이 찾을 수 있었습니다.
우선 미시경제학 파트의 일반균형 파트에 대해서 간략하게 말씀드려 보겠습니다.
경제학에서 일반균형이라 하면, 모든 소비자가 예산제약하에 효용이 극대화 되는 상품묶음을 선택하고, 모든 기업은 주어진 여건 하에서 이윤을 극대화하며, 소비자가 원하는 만큼 생산요소를 공급하고, 상품시장과 생산요소시장의 수요와 공급이 일치하는 균형점을 의미합니다.
이때 생산은 잠깐 제외하고, 순수 교환시장에서만 생각해 볼 경우
이때 소비자간의 계약 가능점들을 이은것을 에지워즈 박스(위 그림입니다.) 계약곡선이라고 부릅니다.
이때 우리는 최적의 균형점을 찾기위해서 '미분'을 사용합니다.
보통 물리에서 미분은 속도를 미분하여 가속도를 구할때 사용합니다. 마찬가지로 경제학에서는 효용의 변화량 즉 한계효용을 구하기 위해서 미분을 사용합니다. 우리가 물리, 수학에서 공부하였듯 미분은 '변화량'개념이기 때문입니다. 이를 통해서 A를 한개 얻었을때의 한계효용, B를 한개 얻었을 떄의 한계효용 등을 구하기 위해서죠.
그리고 이 균형점은 각 소비자들의 A, B 상품의 한계효용비가 일치할때 이뤄 집니다.
즉, 다르게 설명하면, 서로 다른 두 소비자들의 각각의 물건의 가속도가 일치할때가 최적이라는 뜻이 됩니다.
이를 화학2에서 배우는 화학반응식 적으로 설명하자면, 화학식에서의 우변과 좌변의 반응 속도가 일치할 때라는 뜻 입니다. 즉 평형상수 개념이 떠오릅니다.
그런데 참 재밌습니다. 사람들간의 최적점이 평형상수라니 그러면 여기서 하나더 생각해 볼 수 있습니다.
각 사람들의 균형점을 평형상수라고 생각한다면, 각 사람들의 효용은 반응 속도라고 생각할수 있겠네?
놀랍게도 효용식이 유사한 면이 있습니다. 물론 모든 경제학적 함수를 이렇게 표현하진 않지만 가장 많이 사용되는 콥-더글라스 함수식을 보면,
와 같이 놀랍게도
와 매우 유사한 모습을 보여줍니다.
여기서 끝이 아닙니다. 경제학에서 많이 사용되는 생산함수, 즉 노동과 자본을 투입하여 얻어지는 산출물에 대한 함수는 콥 - 더글라스 생산함수로 표현되는데, 이는
진짜 놀랍도록, 화학 반응속도식과 똑같은 모습을 보여줍니다. 문제를 해결하는 과정 또한 유사하구요.
이렇게 화학2와 연관되어있는 부분 말고도 경제학에는 과학적 사고방식과 연관되어있는 부분들이 많습니다.
예를 들면, 최근 가장 활발하게 연구되고있는 DSGE모형(동태확률 일반균형)은 미시적인 모든 사람들의 행동을 확률적으로 규정하고 이를 적분하여(쌓아올려) 거시적으로 경제적 동태를 예측합니다.
마치 양자역학에서 미시세계의 작은 원자의 행동들은 확률적으로 계산하고, 거시적인 현실세계에서의 움직임은 역학으로 구현해 내듯이요.
금융분야로 넘어간다면, 그 유명한 블랙숄즈 방정식이 브라운운동에서 차용된 식이라는 것 또한 유명합니다.
브라운 운동 공식
블랙 숄즈 공식입니다. 이처럼 물리학 또한 경제학에 영향이 많고 유사한점이 많다는 것을 알 수 있습니다.
이렇게 생각보다 학문들은 굉장히 유기적으로 연결되어있고, 사회과학에서 가장 수리적인 분야인 경제학은 그 영향을 가장 많이 받은 학문 중 하나입니다.
저처럼 물리1 2 화학1 2 까지 고교과정에서 모두 학습하였고, 순수 이과였지만, 경제학과에 관심이 생긴 학생들은, 이제것 배워왔던 공부의 아쉬움과 앞으로 전혀 다른것을 공부해야한다는 두려움이 있겠지만, 적어도 경제학에서는 그렇게 아쉬워 할 필요도, 두려워 할 필요도 없다는 것을 말씀드리고 싶습니다.
결국, 수능은 저희의 많은 지식을 테스트 하는 시험이 아니라, 수학능력 시험이며, 수리적, 과학적 사고방식은 어디든 활용 활 수 있는 좋은 무기입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서강대 인공지능 0
나보다 높은 점수인 놈들은 숨어있지말고 퍼뜩퍼뜩 점공을 하도록.
-
고2 선택과목 물리1 해서 인강으로 하려ㅏ는데 추천점 해주십쇼..! 개념 한번도...
-
95 98 1 97 100 언매 미적 사탐 사탐런 많아서 별로 안 높으려나…
-
손은정T 개념학습이 끝난 상태입니다 현장강의 강준호T 듣는 게 화2 50점에 거의...
-
눈이 썩겠네~에 눈이 썩겠네
-
내신대비용 크포 1
3월전까지 필수이론,기출문제 수강하고 여름방학부터 내신대비용으로 크포랑 기출한번더...
-
가긴 어딜 가 패배자는 죽어야지
-
마지막에 그냥 개싸움이 되버린거임.....근데 또 재미는 있음......
-
안녕하세요, 조언 구하려는 예비 반수생입니다. 대성마이맥 패스만 이용하고 성적은...
-
아직희망을버리지않았다
-
살아있는거 알지만 연출 슬프다.....
-
하 술 좋아하는데 ㅜㅜㅜ
-
제가 김상훈T 현강 풀커리 타고 있는데 독서는 어느정도 잡히는데 문학이.. 많이...
-
수능 말아먹어서 김과외로는 과외 절대 못구할텐데.. 고딩대딩 자소서,생기부나 팔아야...
-
777 3
럭☆키
-
제발 보내주세요 감사합니다 쪽지 ㄱㄱㄱㄱ
-
????
-
저어는 연어를 좋아해요
-
수학과 진로 0
수학과 간다음에 ai대학원 가는 경우가 드문가요? 아니면 이 루트가 어렵나요? 결국...
-
신은 월즈로 사겠습니다 사실 이 세명중에 뭐살지 고민중이라서 그런거지 절대...
-
ㄹㅇ 방금전까지 그런줄알았음ㅠㅠ
-
점심 뭐먹지 8
-
받을 예정이세요?
-
여러분들이라면 어디갈 것 같나요??
-
쫄튀라고 생각해야지~~
-
ㅈㄴ야함
-
사화 과목 자체가 처음이라 낯설어요..정말 부탁드립니다
-
입시에서 고마웠던 사람들한테 10개 뿌릴까
-
경희 행정이고 신뢰구간은 99퍼.점공률은41.2퍼 추합은 작년에 9명 재작년에...
-
이거 0
이런 게 스나인거죠?
-
낮에 져주지만 밤에 적극적인 여자
-
11월30일까지 15만원에 메가패스 같이 들으실분 구합니당 패스 제가 보유하고...
-
서울대abc 1
평가 기준이 대충어케됨?
-
난 오티 듣는것도 순공으로 치는 존나 양심없는 인간임 8
오티 가쥬아~~~~~~~ 근데 솔직히 어제랑 그제 진짜 머리 에너지 ㅈㄴ 쓰는...
-
오늘 단과 3
왼쪽엔 물평 오른쪽엔 여붕이
-
수능 수험번호 2
수능 수험 번호 8자리 맞죠..? 엊그제 접수할때 수능 수험번호 적으라해서..
-
왕 눈와여 1
이쁨
-
수학도많이사랑해주세요...
-
이젠 돌이킬 수 없어..
-
폴로가 그립구나 3
폴로는 잘 살고 있을까
-
아니면 운이 안 좋은걸까요.. 국어 작년 6모때 1, 9모때 2 맞고 수능때 3등급...
-
설경 가고싶다 2
설경설경
-
점공 몇등이신가요ㅠㅠ 추합권 일거같네요 저는
-
되게많았음 그 시즌 합격수기까지 싹 훌어보면 종강하고 시작 많이했는데 21은...
-
숙취인가 4
머리가 아파요
-
4명 뽑는 소수과, 실지원자 35명점공 8명
-
만 22살까지 적용 된다는데 대신에 취학시에만 된다고 하더라구요4년제든 전문대든...
인정.
오...그렇군요
수능 수학은 계산이상의 것을 요구하는 측면이 있어서 사실 대학 공학이나 경제학 공부의 경우
수학을 도구로 사용하기때문에 막 엄청난 수리적 능력을 요구하진 않습니다.
다만 수능 잘본 학생들이 보통 머리도 좋고 숫자도 친하니 잘할 가능성이 높을 뿐이죠
오펜하이머, 아인슈타인 등도 수학을 잘하긴 했지만 수학이 특기는 아니었습니다. 영화에서도 나오듯
"The important thing isn't can you read music, it's can you hear it. Can you hear the music, Robert?"
악보를 읽을 줄 알면 괜찮습니다.