행렬연립방정식문제문의.
게시글 주소: https://ebsi.orbi.kr/0004399837
그냥 그러려니 하면, 될 거 같긴 한데..
행렬연립방정식문제유형중에
'X=0,Y=0 이외의 해를 갖도록 하는 상수의 값을 구하라'는 문제가 있지 않습니까?
그러면, 애초에 그 상수를 기입한 두 식의 해중에 X=0,Y=0 가 포함되면 안되는거 아닌가요?
가령, 수학개념서들을 보면 'XY>0,XY<0이면, X=0,Y=0 이외의 해를 갖는다.'라고 써있어서 말이죠.
한국사람인데 한국말이 헷갈리네요.
당연히 그런거지 같은 답변말고,
이유있는 답변 부탁드립니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내가 미친거겟지...
-
뉴런 시냅스 0
예비 고3인데 뉴런 띰 개 끝날때마다 시냅스 띰1과씩 푸는 데 거의 다 틀림. 답지...
-
고2 모고 다 3떳어요 고1수학 중요하대서 가끔 고1 4점만 좀 풀어보려 하는데...
-
최애 설빙은? 7
난 딸기
-
삼수,군대,반수 6
일단 현역 때 52545였고 2025(재수)9모 때 생명 42점 지구 48(1번...
-
붙여줘라..! 애기도 많이 낳을게
-
본인 알바 계약을 오전부터 12시까지 했는데 내가 학원으로 첫출근 했음 계약한...
-
3년 전엔 다음 대선은 뉴섬이랑 디샌티스가 치르고 있지 않을까? 라고 생각하는게...
-
조사 들어간게 아니라 사장님 사업자 변경때문에 잠깐 막힌거라함 저도 메일로 보낸게...
-
1. 스마일 라식을 진행할 때/한 후 특히 주의해야 할 점이 있나요? 2. 일반...
-
Zanda 1
Yongzazal
-
씻은지 2일 된 줄 알악는데 생각해보니까 하루엿어요 다들 잘자용
-
탄핵소추 사유 1.줄곧 헌법과 법률을 위반하여 국법질서를 문란케 함 2.노무현...
-
잊력을 내영하세요.
-
체포든뭐든 5
계절시험6시간남은내가더좆된듯하다………
-
I'll be back on next dawn orbi
-
현역 내신 3-4등급 공부를 한번도 해본적 없었는데 수능은 국숭세단 라인이었습니다...
-
표점만 다르면 반영방식이 어케되는거예요? 만약 25생윤처럼 불불불로나오면 만에하나...
-
ㄷㄷ
-
올해4점짜리만 5000문제정도풀면서 3년동안 4점짜리 10000문제가까이풀면서...
-
단순히 글의 의미와 주제를 파악하는것 뿐만 아니라 필자의 음흉한 의도를 파악하는데도...
-
야식먹기vs자기 12
-
사문 1순위인 데엔 이견이 없을 듯하고 그 다음은 뭐가 있을까요?
-
이번 생은 호모로맨스 에이섹슈얼 안드로진이라 힘들다
-
이수린씨 이름이 너무 이쁜걸 어떡해요,,
-
그동안 설대는 안 알아봤어서 감이 안 오는데 대략 어디쯤이다 식으로 라인만...
-
이과 누백 1퍼 0
수능 몇틀 정도인가요 아니면 국수탐탐 각각 백분위로 몇 정도
-
일어나라. 주변이 어두워 앞이 안 보이는 것 같아도, 5
아직 밤이 아니다.
-
20등 초반대 점수 궁금해요 (진학사로 다른 대학 점공 봐서 못 봤어요)
-
왜 언매러들이 화작러들보다 10퍼 이상씩은 높은거임 언매는 아무나 하는게 아니다 이건가
-
공부는 안하고 쓸 데 없이 빡갤 오르비 뒤져보며 강사 이름 하나하나 쳐보고 있네...
-
눈팅만 할때는 딥피드만 봤는데 이젠 모아보기가 제알 재밌네
-
반가워요 2
저는 시험(수능아님)공부중입니다...ㅠ
-
잘자요 10
대답안해주면 얼굴 무브링 넝당 ㅎ
-
이틀차 ㅇㅈ 26
응디에 생긴 빠따와 회초리 자국
-
이녀석 언제 눈치깜?
-
잘자 2
바이바이
-
게임동아리 1
가면 롤하나요?
-
수린이 왜 반갑지 10
다른 이상한 빌런들 겪다보니 좀 취향이 특이해서 그렇지 애는 착해보임
-
자기야 ㅎㅎ 2
나랑 같이 자장
-
몇 점 정돈가요??
-
오히려 이렇게 당시 6평 22번 킬러문항 아니다했었음
-
10일이면 낫는다 했는데 이제 7일지남.. 문제는 멍이 안없어짐 ㅅㅂ 얼음찜질과...
-
실검이 이상한데 0
유빈이 1위네 뭐 올라왔나
-
비상비상 4
새르비에 그가 나타났다
-
한양대 의대를 가고싶으면 꼭 과탐 2과목을 선택해야하나요? 물1 지1 선택하려고...
-
잠이오질않네요 0
오늘도잠못이루는이밤
-
오늘 3일만에 머리감으니까 10 가닥 좀 넘게 빠지던데 평소에는 5 6가닥정도 원래...
일상적인 언어와 달리 수학에서는
이외(以外), 이내(以內), 이상(以上), 이하(以下)와 같이
'以'자를 사용하는 표현은 그 경계가 포함됨을 의미합니다.
그래서 'x=y=0 이외의 해'라 하면 x=y=0 포함이죠.
(저도 당연한 거라 생각해왔는데, 다시 들여다보니 이렇네요.)
경계가 포함되면 제가 반례로 든 수학개념서의 예시는 말이 안 맞게 되는데요?;;
저도 그 생각이 들어서 위 댓글에 내용 추가중이었는데 날아가버렸어요... ㅡㅡ
'XY>0, XY<0이면 X=0, Y=0 이외의 해를 갖는다'라는 표현은 이 기준에 어긋난 것이 맞습니다. 수학적인 언어와 일상적인 언어의 구분을 하지 않아서 온 문제죠.
수능에선 중의적인 의미를 가지는 단어는 배제되거나, 추가적인 조건이 붙습니다. 핵심이 아닌 쪽에 너무 신경쓰지 마세요~ ^^
네 감사합니다.^^ 열공하세요.
몇 가지 덫붙이자면 x=y=0 이라는 해는 선형대수학(연립방정식과 벡터, 1차원 적인 개념들을 다루는 수학의 한 분야)에서 동차연립방정식(상수항이 0인 연립 일차방정식) 의 'Trivial solution(자명해)'라고 불리는 해 입니다. 이름 그대로 그것이 해임이 자명하다! 어떤 동차연립일차방정식을 가져오든 저것만큼은 당연히 해가 맞다! 라는 의미죠. 그러나 우리가 궁금한건 너무나 자명한 것 외에 연립방정식에 어떤 또 다른해가 있을 수 있는가? 혹은 그럴 수 없는가? 이겠죠. 예를들어 자명한 해 외에 또 다른 유한개의 해가 존재할 수 는 없는가? 라는 의심이 들수도 있습니다. 그게 바로 x=y=0 이외의 해가 존재할 상황이죠. 물론 이 상황에 유한개의 해가 아닌 무한개의 해가 존재한다는 걸 우리는 알고있죠^^ 기하학적으로는 두 직선이 일치할 수 밖에 없고(물론 교과서도 엄밀하게 그것을 밝히지는 않지만) 대수적으로도 그렇다는걸 증명하죠. 그게 행렬과 연립일차방정식 문제의 본질이고 그것은 대학수학의 선형대수라는 과목 중 가장 기본적인 내용입니다.
좋은 말씀 감사합니다^^ 올해 붙으면 내년에 이 소리를 교수님께 들을수 있겠죠?ㅎ