함수의 극대 극소 유도과정 중 궁금한 것이 생겼습니다.ㅠ
게시글 주소: https://ebsi.orbi.kr/0002902029
문과 고2인데요... 수학 양민이라 그런지 좀 이해안되는게 생겼습니다.
극대와 극소 중 미분가능한 함수 f(x)가 x=a에서 극값을 가지면, f`(a)= 0 이다. 이건 알겠는데 이러한 정리를 유도하는 과정 중 제가 보는 2가지 책의 서술에 약간의 차이가 있습니다.
두 책다 함수의 극한의 대소관계를 이용하여 유도하는데(정확히 말하자면 도함수의 부호로..) 교과서 같은 경우 f(a)가 극댓값이면 x=a의 충분히 가까운 모든 x에대하여 f(x)<f(a)이다. 라 하는데
숨마쿰라우데 같은 경우 f(x)가 x=a에서 극댓값을 가진다고 가정하면 x=a 근방의 t<a인 t에대하여 f(a)>f(t)가 성립한다고 합니다.(등호 들어갑니다; 교과서는 등호는 안들어가고요.. 등호를 수식으로 쓰는법을 몰라서)
정리하자면 f(x)가 x=a에서 극댓값을 가질 때, x=a 근방의 t에대하여 f(a)와 f(t)사이의 대소관계에 대하여 등호가 성립할 수 있나요.. 전 교과서 서술이 맞는 것 같은데... 어차피 극한으로 보내면 등호 성립되서 유도되긴 하지만 궁금합니다.
가르쳐주세요 ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과고 영재교 친구들과 학점경쟁을 할 자신이 없었음... 미적 물리에서 썰릴 거 같아서 옴
-
인강 둘 다 같이 병행해야되나요? + 기출도 같이 병행해야되는지.. 궁금해요
-
인생 업적 0
아직까지 살아 있음
-
인하대 작년에 새터 3월에 했다는데 진짜인가요?
-
제가 여기서 뻘글은 양산해도 친목질은 그닥 안 하긴 했지만 해볼까요
-
연심리 예비 8번 추합한 사람이 가천대 경영학과 예비받던 사람...
-
유튜브에 올라온 무료 강의들 보고 진짜 이론만 알고있던 문법 지식들 체화하기 좋았음
-
너무 비효율일까요? 25 수능 5 떴습니다 국어에 시간 투자 많이 하고 싶어요
-
하
-
25수능 19번까지만 25분만에 풀었는데 공통에서 13 15번 못 풀었고 14번도...
-
거기선 뭘 가르치나요
-
405.7 몇등이에요?
-
경조사 때 우짬 결혼식은 몰라도 장례식 때 사람 별로 없으면 좀 그럴 듯
-
ㅇㅈ 4
인생 처음으로 칼럼이 오르비 홈에 입성함
-
깨끗하게 다시 들고왔습니다 ㅋㅋㅋㅋㅌㅌㅋㅋ
-
나 흑화 할거임 2
김승리? 강민철? 다 필요없다 그들은 내가 1등급, 만점을 찍기 전의 범부 였을 뿐...
-
❗️❗️질받 2
-
약대 여초임? 9
아니 과톡에 여자이름 왜케 많아;;
-
ㅈㄱㄴ 2월 중후반? 몇주차쯤하나요
-
난 이 게임을 해봤어요 10
난 이 게임을 해봤어요 난 이 게임을 해봤어요 난 이 게임을 해봤어요 난 이 게임을...
-
오겜이 신기한게 1
1때도 그렇고 초반에는 평안좋다가 해외에서 터지니까 여론이 바뀜
-
마음에들어요 공개일 때 그냥 마음에 드는거(으흐흐) 하트 잔뜩 눌러놨는데 사람들이...
-
데이터 엄청 나네 ㄷㄷㄷ
-
새터가서 고백박으면 됨
-
할만한가요? 시급 쎄요??
-
근데 나는 학창시절 때 12
운동도 잘해서 반 남자애들도 좋아해주고 막 대회 같은거 하면 애들이 나한테 너가...
-
점공률 80프로 1
예상 예비 6번인데 7명뽑는과라 떨어진거같네요 ㅠ
-
9시~10시 기상 해보겠슴니다
-
아암거나 다 ..0
-
오티랑 엠티도 안가야지
-
맨밥만 먹어야한다는 사실에 엉엉 울어버렸어
-
이거면 멧돼지도 잡을 수 있을 용량인듯 그나마 정신있을때 잘자요~
-
Test Is rhythM 이거 꼭 해야하는거임뇨?
-
야식 치킨 ㅊㅊ 4
약간 양념이 땡김
-
뭔가 이름이 마음에 듬 가게해다오..
-
설마 설 이후에 하겟어
수학적인 엄밀한 정의는 적으신 내용이 맞습니다. 즉,
[정의] 어떤 δ > 0 이 존재하여, (a-δ, a+δ) 위에서 f(x) ≤ f(a) 가 성립하면 x = a 를 함수 f의 극대점이라고 하고 f(a)를 함수 f의 극대값이라고 부릅니다.
극소값 역시 마찬가지로 정의됩니다. 그리고 더 나아가서 일반적으로 수학 분야에서는 증가함수나 감소함수를 정의할 때에도 역시 부등호에 등호가 들어갑니다.
(그래서 등호가 빠지는 부등호로 정의되는 증감의 경우 순증가, 순감소 등의 용어를 사용합니다.)
고교과정에서 어떤 식으로 이런 개념을 정의하는지 제가 잘 기억하고 있지는 못하지만, 설사 다르게 정의하고 있다고 해도 그 정의가 고교과정 이외에서 쓰이는 것을 저는 본 적이 없네요. -_-;;
사실 이론 분야에서 만나는 수많은 함수들은 너무나도 기괴한 행동을 보이기 때문에, 증가상태에서 감소상태로 바뀐다는 식의 정의로는 다룰 수 있는 함수가 너무 부족합니다.
예를 들어서 그 어떤 점에서도 증가상태나 감소상태가 아니고 그 어떤 점에서도 미분 불가능하지만 모든 점에서 연속인 함수가 존재합니다.
이러한 함수의 예는 비단 순수수학에서뿐만 아니라 경제학에서의 주가 변동 모델이나 물리학 등에서의 브라운 운동의 수학적 모델 등에서도 찾아볼 수 있습니다.
때문에 이론에서는 가능한한 우리가 상상하는 개념을 수학적으로 다룰 수 있게 다듬으면서도 동시에 가능하면 많은 경우를 다룰 수 있도록 최대한 약한 정의를 사용하려고 합니다. 그래서 등호가 들어가는 것이지요.
사실 '상수함수는 모든 점이 극대점이고 극소점이다' 와 같은 몇몇 극단적인 케이스만 납득하고 넘어간다면, 주어진 정의는 등호가 빠진 정의외 크게 다를 바가 없기도 합니다만... -ㅅ-;;
저도 예전에 똑같은 궁금증 때문에 질문 했었는데,
그에 대한 sos440님의 답변입니다. 참조하시길
제가 잘못 알고있었나 보군요;; 앞으로 저는 답변을 달지 말아야겠네요 ㅠㅠ
감사합니다.