쉬운개념같은데 알려주세여ㅜ_ㅜ
게시글 주소: https://ebsi.orbi.kr/0002894845
10-나 정석으로 삼각함수 보다가요, '2분의 n파이 +,- 세타'의 삼각함수 공식의 암기 방법이 나왔는데요.. n이 짝수면 sin은 sin으로 그대로 두고 등등.. 그런데 여기서 세타는 항상 예각으로 간주하고(설령 둔각이든, 어떤 각이든) '2분의 n파이 +,- 세타'가 나타내는 동경을 그린다 라고 나왔는데요.. 둔각이면은 n의 값 자체에 영향을 미칠 수 있기 때문에 이 공식이 적용 안되지 않나요?; 위의 문장에서 왜 설령 둔각일지라도 예각으로 간주하는지 에 대한 설명 좀 부탁드릴게요..ㅠ_ㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어딜 감히 날 가르쳐 내가 제일 잘하는데<<<실제 마인드였음...
-
내 인생 업적 2
-
확대수술하면 4
길이는 못늘리나요? 오로지 두께인가요?
-
어딜가도 내신 5점대일거면 개추 ㅋㅋ
-
왜 다들 김범준 그래프분리만 생각하너 병훈쌤도 설명 해주는데 이게 프레임인가
-
수시충은 그런 거 하다가는 저격 먹을까봐 못한다는 거임 나는.. 진또배기.. 저능아다..
-
병장 만기전역 << 주면 가짐?
-
강대 1학년 입학예정인데 새터해주나요??
-
인생업적 12
전교회장 1회 반장 3회 부반장 2회 운동부 주장 1회 현역 정시러로 한번에 감
-
커리어하이 7
유치원때 부잣집딸한테 고백받음
-
너무하지 않나 물론 대학 자율이니까 할 말은 없긴 한데 출결 이런 것도 아니고 내신...
-
근데 이거 팔로우 받으면 제가 글 쓸 때마다 알림 감? 3
그건 너무 이상한 느낌인데
-
새터 걱정 ㄴㄴ 17
어차피 님들 다 강대 시대 다녔잖아요 재수생들 시대얘기 ㅈㄴ 하면서 빠르게 친해짐
-
진짜머지
-
과고 영재교 친구들과 학점경쟁을 할 자신이 없었음... 미적 물리에서 썰릴 거 같아서 옴
-
인강 둘 다 같이 병행해야되나요? + 기출도 같이 병행해야되는지.. 궁금해요
-
인생 업적 0
아직까지 살아 있음
-
인하대 작년에 새터 3월에 했다는데 진짜인가요?
-
제가 여기서 뻘글은 양산해도 친목질은 그닥 안 하긴 했지만 해볼까요
-
연심리 예비 8번 추합한 사람이 가천대 경영학과 예비받던 사람...
-
유튜브에 올라온 무료 강의들 보고 진짜 이론만 알고있던 문법 지식들 체화하기 좋았음
-
너무 비효율일까요? 25 수능 5 떴습니다 국어에 시간 투자 많이 하고 싶어요
-
하
-
25수능 19번까지만 25분만에 풀었는데 공통에서 13 15번 못 풀었고 14번도...
-
거기선 뭘 가르치나요
-
405.7 몇등이에요?
-
경조사 때 우짬 결혼식은 몰라도 장례식 때 사람 별로 없으면 좀 그럴 듯
-
ㅇㅈ 4
인생 처음으로 칼럼이 오르비 홈에 입성함
-
깨끗하게 다시 들고왔습니다 ㅋㅋㅋㅋㅌㅌㅋㅋ
-
나 흑화 할거임 2
김승리? 강민철? 다 필요없다 그들은 내가 1등급, 만점을 찍기 전의 범부 였을 뿐...
-
❗️❗️질받 2
-
약대 여초임? 9
아니 과톡에 여자이름 왜케 많아;;
-
ㅈㄱㄴ 2월 중후반? 몇주차쯤하나요
-
난 이 게임을 해봤어요 10
난 이 게임을 해봤어요 난 이 게임을 해봤어요 난 이 게임을 해봤어요 난 이 게임을...
-
오겜이 신기한게 1
1때도 그렇고 초반에는 평안좋다가 해외에서 터지니까 여론이 바뀜
-
마음에들어요 공개일 때 그냥 마음에 드는거(으흐흐) 하트 잔뜩 눌러놨는데 사람들이...
-
데이터 엄청 나네 ㄷㄷㄷ
-
새터가서 고백박으면 됨
-
할만한가요? 시급 쎄요??
예를들어 n파이 n은자연수라고 할때 사인 n파이 플러스 세타라고 보면 사인을 그대로두는게 아니라 n이 홀수이면 마이너스를 붙이고 짝수이면 그대로 두는건데요 이러한 상황에서 둔각이든 예각이든 0~360도 까지의무슨 각을 더하거나 빼거나 해도 상관이없어요 님이 생각하신 오류는 n파이가 홀수짝수를 구분하지않고 생각 하셨기 때문에 발생한거라고 생각해요 아참 음의 정수는 사인이 기함수이니까 반대로 생각하시면 되겠네요
예를들어 싸인 (pi+240 )이라고보면 마이너스 사인240이니까 사인 육십도 즉앞의각인 420도와 같게되는거죠
제가 제대로 이해했는지 모르겠네요ㅠㅎ 그럼 만약 사인 n파이 플러스(마이너스) 세타라고 보면 x축의 양의 방향과 x축의 음의 방향을 기준으로만 움직이니깐 부호를 고려하지 않았을 때, 사인의 값이 같게 되고, 아무리 둔각 120, 300, 340등을 생각하더라도 120은 180-60, 300은 360-60, 340은 360-20 등으로 생각하면 되니깐 부호를 고려하지 않은 값은 어차피 같으니 나중에 부호만 따지면 되기 때문에 둔각이어도 괜찮다는 것인가요? 사인 150은 90+60으로 보아서 cos 60으로 볼 수도 있지만 파이-30으로 볼 수도 있으니 모든 각을 n파이를 기준으로 플러스, 마이너스로 생각하신 거라고 보면 될까요?ㅠㅎ
네 잘이해하셨네요 파이의 정수배의 사인값은 절대값은 같고 방향만 다르기때문에( 홀짝에따라 )피 자신이 편한걸로 익숙하게 하시면 됩니다 다만 반파이의 홀수배는 항상염두해 두시는게 좋아요 삼각방정식에 접근에세 정수파이로도 풀리는 문제가 때부분이지만 일반의 공식으로 접근하게될때 싸를 코로 코를 싸로 바꾸면 쉽게접근 할수있는경우가 있으니까요
아하~ 그렇군요ㅎㅎ 그러면 cos이나 tan 역시 sin과 같이 파이의 정수배 기준에서 생각을 해보아서, 둔각도 가능하다는 개념을 먼저 이해하고, 나중에 문제풀이에 따라 적절히 반파이의 홀수배에 대한 공식을 이용하면 되는 거죠? ㅎㅎ
네 열공하세요!
네~ 감사합니다ㅜㅜ!!